3.2046 \(\int \frac{x}{(a+\frac{b}{x^3})^{3/2}} \, dx\)

Optimal. Leaf size=269 \[ \frac{7 \sqrt{2+\sqrt{3}} b^{2/3} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right ) \sqrt{\frac{a^{2/3}-\frac{\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac{b^{2/3}}{x^2}}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt{3}\right )}{6 \sqrt [4]{3} a^2 \sqrt{a+\frac{b}{x^3}} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}}}+\frac{7 x^2 \sqrt{a+\frac{b}{x^3}}}{6 a^2}-\frac{2 x^2}{3 a \sqrt{a+\frac{b}{x^3}}} \]

[Out]

(-2*x^2)/(3*a*Sqrt[a + b/x^3]) + (7*Sqrt[a + b/x^3]*x^2)/(6*a^2) + (7*Sqrt[2 + Sqrt[3]]*b^(2/3)*(a^(1/3) + b^(
1/3)/x)*Sqrt[(a^(2/3) + b^(2/3)/x^2 - (a^(1/3)*b^(1/3))/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2]*EllipticF[Ar
cSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)], -7 - 4*Sqrt[3]])/(6*3^(1/4)*a^2
*Sqrt[a + b/x^3]*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)/x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2])

________________________________________________________________________________________

Rubi [A]  time = 0.114713, antiderivative size = 269, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.308, Rules used = {335, 290, 325, 218} \[ \frac{7 \sqrt{2+\sqrt{3}} b^{2/3} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right ) \sqrt{\frac{a^{2/3}-\frac{\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac{b^{2/3}}{x^2}}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}} F\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt{3}\right )}{6 \sqrt [4]{3} a^2 \sqrt{a+\frac{b}{x^3}} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}}}+\frac{7 x^2 \sqrt{a+\frac{b}{x^3}}}{6 a^2}-\frac{2 x^2}{3 a \sqrt{a+\frac{b}{x^3}}} \]

Antiderivative was successfully verified.

[In]

Int[x/(a + b/x^3)^(3/2),x]

[Out]

(-2*x^2)/(3*a*Sqrt[a + b/x^3]) + (7*Sqrt[a + b/x^3]*x^2)/(6*a^2) + (7*Sqrt[2 + Sqrt[3]]*b^(2/3)*(a^(1/3) + b^(
1/3)/x)*Sqrt[(a^(2/3) + b^(2/3)/x^2 - (a^(1/3)*b^(1/3))/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2]*EllipticF[Ar
cSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)], -7 - 4*Sqrt[3]])/(6*3^(1/4)*a^2
*Sqrt[a + b/x^3]*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)/x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2])

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rubi steps

\begin{align*} \int \frac{x}{\left (a+\frac{b}{x^3}\right )^{3/2}} \, dx &=-\operatorname{Subst}\left (\int \frac{1}{x^3 \left (a+b x^3\right )^{3/2}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{2 x^2}{3 a \sqrt{a+\frac{b}{x^3}}}-\frac{7 \operatorname{Subst}\left (\int \frac{1}{x^3 \sqrt{a+b x^3}} \, dx,x,\frac{1}{x}\right )}{3 a}\\ &=-\frac{2 x^2}{3 a \sqrt{a+\frac{b}{x^3}}}+\frac{7 \sqrt{a+\frac{b}{x^3}} x^2}{6 a^2}+\frac{(7 b) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^3}} \, dx,x,\frac{1}{x}\right )}{12 a^2}\\ &=-\frac{2 x^2}{3 a \sqrt{a+\frac{b}{x^3}}}+\frac{7 \sqrt{a+\frac{b}{x^3}} x^2}{6 a^2}+\frac{7 \sqrt{2+\sqrt{3}} b^{2/3} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right ) \sqrt{\frac{a^{2/3}+\frac{b^{2/3}}{x^2}-\frac{\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}} F\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt{3}\right )}{6 \sqrt [4]{3} a^2 \sqrt{a+\frac{b}{x^3}} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}}}\\ \end{align*}

Mathematica [C]  time = 0.0230181, size = 67, normalized size = 0.25 \[ \frac{-7 b \sqrt{\frac{a x^3}{b}+1} \, _2F_1\left (\frac{1}{6},\frac{1}{2};\frac{7}{6};-\frac{a x^3}{b}\right )+3 a x^3+7 b}{6 a^2 x \sqrt{a+\frac{b}{x^3}}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/(a + b/x^3)^(3/2),x]

[Out]

(7*b + 3*a*x^3 - 7*b*Sqrt[1 + (a*x^3)/b]*Hypergeometric2F1[1/6, 1/2, 7/6, -((a*x^3)/b)])/(6*a^2*Sqrt[a + b/x^3
]*x)

________________________________________________________________________________________

Maple [B]  time = 0.011, size = 2052, normalized size = 7.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a+b/x^3)^(3/2),x)

[Out]

1/6/((a*x^3+b)/x^3)^(3/2)/x^5*(a*x^3+b)/a^3/(-b*a^2)^(1/3)*(14*I*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*
a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)
*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticF((-(I*3
^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/
2)-3))^(1/2))*3^(1/2)*(x*(a*x^3+b))^(1/2)*x^2*a^2*b-28*I*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/
3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(
1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3
)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(
1/2))*(-b*a^2)^(1/3)*3^(1/2)*(x*(a*x^3+b))^(1/2)*x*a*b+14*I*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^
(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*
3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2
)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3)
)^(1/2))*(-b*a^2)^(2/3)*3^(1/2)*(x*(a*x^3+b))^(1/2)*b-14*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/
3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(
1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3
)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(
1/2))*(x*(a*x^3+b))^(1/2)*x^2*a^2*b+28*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(
1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3
)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2
))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-b*a^2)^(1/
3)*(x*(a*x^3+b))^(1/2)*x*a*b-14*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-
b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x
-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*
x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-b*a^2)^(2/3)*(x*(
a*x^3+b))^(1/2)*b+3*I*(1/a^2*x*(-a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))*(I*3^(1/2
)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(1/2)*(a*x^4+b*x)^(1/2)*(-b*a^2)^(1/3)*3^(1/2)*(x*(a*x^3+b))^(1/2)*a+4
*I*(1/a^2*x*(-a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)-2*
a*x-(-b*a^2)^(1/3)))^(1/2)*(-b*a^2)^(1/3)*3^(1/2)*x*a*b-9*(1/a^2*x*(-a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(
1/3)+2*a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(1/2)*(a*x^4+b*x)^(1/2)*(-b*a^2)^(
1/3)*(x*(a*x^3+b))^(1/2)*a-12*(1/a^2*x*(-a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))*(
I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(1/2)*(-b*a^2)^(1/3)*x*a*b)/(I*3^(1/2)-3)/(1/a^2*x*(-a*x+(-b*a
^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(1
/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{{\left (a + \frac{b}{x^{3}}\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b/x^3)^(3/2),x, algorithm="maxima")

[Out]

integrate(x/(a + b/x^3)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{x^{7} \sqrt{\frac{a x^{3} + b}{x^{3}}}}{a^{2} x^{6} + 2 \, a b x^{3} + b^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b/x^3)^(3/2),x, algorithm="fricas")

[Out]

integral(x^7*sqrt((a*x^3 + b)/x^3)/(a^2*x^6 + 2*a*b*x^3 + b^2), x)

________________________________________________________________________________________

Sympy [A]  time = 1.04828, size = 42, normalized size = 0.16 \begin{align*} - \frac{x^{2} \Gamma \left (- \frac{2}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{2}{3}, \frac{3}{2} \\ \frac{1}{3} \end{matrix}\middle |{\frac{b e^{i \pi }}{a x^{3}}} \right )}}{3 a^{\frac{3}{2}} \Gamma \left (\frac{1}{3}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b/x**3)**(3/2),x)

[Out]

-x**2*gamma(-2/3)*hyper((-2/3, 3/2), (1/3,), b*exp_polar(I*pi)/(a*x**3))/(3*a**(3/2)*gamma(1/3))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{{\left (a + \frac{b}{x^{3}}\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b/x^3)^(3/2),x, algorithm="giac")

[Out]

integrate(x/(a + b/x^3)^(3/2), x)